Pubblicazioni Scientifiche

Le pubblicazioni scientifiche dei Professori Sergio Brovelli e Francesco Meinardi

Quantized Electronic Doping towards Atomically Controlled “Charge-Engineered” Semiconductor Nanocrystals, NanoLetters 2019

“Charge engineering” of semiconductor nanocrystals (NCs) through so-called electronic impurity doping is a long-standing challenge in colloidal chemistry and holds promise for ground-breaking advancements in many optoelectronic, photonic, and spin-based nanotechnologies. To date, our knowledge is limited to a few paradigmatic studies on a small number of model compounds and doping conditions, with important electronic dopants still unexplored in nanoscale systems. Equally importantly, fine-tuning of charge engineered NCs is hampered by the statistical limitations of traditional approaches. The resulting intrinsic doping inhomogeneity restricts fundamental studies to statistically averaged behaviors and complicates the realization of advanced device concepts based on their advantageous functionalities. Here we aim to address these issues by realizing the first example of II–VI NCs electronically doped with an exact number of heterovalent gold atoms, a known p-type acceptor impurity in bulk chalcogenides. Single-dopant accuracy across entire NC ensembles is obtained through a novel non-injection synthesis employing ligand-exchanged gold clusters as “quantized” dopant sources to seed the nucleation of CdSe NCs in organic media. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time into II–VI NCs, are found to incorporate as nonmagnetic Au+ species activating intense size-tunable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au+ to paramagnetic Au2+ (5d9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behavior revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs. Altogether, our results demonstrate a new chemical approach toward NCs with physical functionalities tailored to the single impurity level and offer a versatile platform for future investigations and device exploitation of individual and collective impurity processes in quantum confined structures.

Perovskites cut energy losses, Nature Energy 2019

The realization of perovskite nanostructures featuring high emission efficiency and a wide Stokes shift is proving difficult, limiting their impact on luminescent solar concentration technology. Now, engineered exciton routing within multilayered perovskite nanoplatelets may open a path towards high-performing, low-loss devices.

Luminescent solar concentrators for building-integrated photovoltaics, Nature Reviews Materials Dec 2017

The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi- transparent, electrodeless PV glazing systems that can be integrated ‘invisibly’ into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators, ACS Energy Letters 15-09-2017

Halide perovskite nanocrystals (NCs) are promising solution-processed emitters for low-cost optoelectronics and photonics. Doping adds a degree of freedom for their design and enables us to fully decouple their absorption and emission functions. This is paramount for luminescent solar concentrators (LSCs) that enable fabrication of electrode-less solar windows for building-integrated photovoltaic applications. Here, we demonstrate the suitability of manganese-doped CsPbCl3 NCs as reabsorption-free emitters for large-area LSCs. Light propagation measurements and Monte Carlo simulations indicate that the dopant emission is unaffected by reabsorption. Nanocomposite LSCs were fabricated via mass copolymerization of acrylate monomers, ensuring thermal and mechanical stability and optimal compatibility of the NCs, with fully preserved emission efficiency. As a result, perovskite LSCs behave closely to ideal devices, in which all portions of the illuminated area contribute equally to the total optical power. These results demonstrate the potential of doped perovskite NCs for LSCs, as well as for other photonic technologies relying on low-attenuation long-range optical wave guiding.

Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots, Nature Photonics 20-02-2017

Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots, Nature Nanotechnology 24-08-2015

Luminescent solar concentrators serving as semitransparent photovoltaic windows could become an important element in net zero energy consumption buildings of the future. Colloidal quantum dots are promising materials for luminescent solar concentrators as they can be engineered to provide the large Stokes shift necessary for suppressing reabsorption losses in large-area devices. Existing Stokes-shift-engineered quantum dots allow for only partial coverage of the solar spectrum, which limits their light-harvesting ability and leads to colouring of the luminescent solar concentrators, complicating their use in architecture. Here, we use quantum dots of ternary I–III–VI2 semiconductors to realize the first large-area quantum dot–luminescent solar concentrators free of toxic elements, with reduced reabsorption and extended coverage of the solar spectrum. By incorporating CuInSexS2–x quantum dots into photo-polymerized poly(lauryl methacrylate), we obtain freestanding, colourless slabs that introduce no distortion to perceived colours and are thus well suited for the realization of photovoltaic windows. Thanks to the suppressed reabsorption and high emission efficiencies of the quantum dots, we achieve an optical power efficiency of 3.2%. Ultrafast spectroscopy studies suggest that the Stokes-shifted emission involves a conduction-band electron and a hole residing in an intragap state associated with a native defect.

Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix, Nature Photonics 13-04-2014

Luminescent solar concentrators are cost-effective complements to semiconductor photovoltaics that can boost the output of solar cells and allow for the integration of photovoltaic-active architectural elements into buildings (for example, photovoltaic windows). Colloidal quantum dots are attractive for use in luminescent solar concentrators, but their small Stokes shift results in reabsorption losses that hinder the realization of large-area devices. Here, we use ‘Stokes-shift-engineered’ CdSe/CdS quantum dots with giant shells (giant quantum dots) to realize luminescent solar concentrators without reabsorption losses for device dimensions up to tens of centimetres. Monte-Carlo simulations show a 100-fold increase in efficiency using giant quantum dots compared with core-only nanocrystals. We demonstrate the feasibility of this approach by using high-optical-quality quantum dot–polymethylmethacrylate nanocomposites fabricated using a modified industrial method that preserves the light-emitting properties of giant quantum dots upon incorporation into the polymer. Study of these luminescent solar concentrators yields optical efficiencies >10% and an effective concentration factor of 4.4. These results demonstrate the significant promise of Stokes-shift-engineered quantum dots for large-area luminescent solar concentrators.

Menu