Doped Halide Perovskite Nanocrystals for Reabsorption-Free Luminescent Solar Concentrators

Francesco Meinardi, Quinten A. Akkerman, Francesco Bruni, Sungwook Park, Michele Mauri, Zhiyi Dang, Libero Manna, and Sergio Brovelli

ABSTRACT: Halide perovskite nanocrystals (NCs) are promising solution-processed emitters for low-cost optoelectronics and photonics. Doping adds a degree of freedom for their design and enables us to fully decouple their absorption and emission functions. This is paramount for luminescent solar concentrators (LSCs) that enable fabrication of electrode-less solar windows for building-integrated photovoltaic applications. Here, we demonstrate the suitability of manganese-doped CsPbCl$_3$ NCs as reabsorption-free emitters for large-area LSCs. Light propagation measurements and Monte Carlo simulations indicate that the dopant emission is unaffected by reabsorption. Nanocomposite LSCs were fabricated via mass copolymerization of acrylate monomers, ensuring thermal and mechanical stability and optimal compatibility of the NCs, with fully preserved emission efficiency. As a result, perovskite LSCs behave closely to ideal devices, in which all portions of the illuminated area contribute equally to the total optical power. These results demonstrate the potential of doped perovskite NCs for LSCs, as well as for other photonic technologies relying on low-attenuation long-range optical wave guiding.

Received: August 4, 2017
Accepted: September 11, 2017
decouple the optical absorption by the NC host from the emission function of the guest impurity, doping might markedly extend the applicative potential of perovskite NCs, potentially paving the way to their use in emerging photon management technologies, in which a wide spectral separation between the absorption and emission bands is key for efficient device performances. One recent example of the potential of this approach has been demonstrated by Wang et al., who used Mn/CsPbCl$_3$ NCs as downconverters for enhancing both the efficiency and the stability of perovskite solar cells.7

One of the most compelling classes of photonic devices relying on so-called Stokes shift engineered emitters are luminescent solar concentrators (LSCs),53,54 which have recently been proposed as an effective complement to conventional photovoltaic modules for the realization of building-integrated photovoltaic (BIPV) devices, such as semitransparent PV windows potentially capable of converting the facades of urban buildings into distributed energy generation units.$^{55−58}$ A typical LSC consists of a plastic or glass optical waveguide doped or coated with emissive materials (Figure 1a).54,59 Direct as well as diffused sunlight penetrates the matrix and is absorbed by the emitters that reradiate it as longer-wavelength fluorescence. Total internal reflection ensures propagation of the emitted light to the waveguide edges, where small PV cells installed along the slab perimeter convert it into electricity (Figure 1a).55,58,60,61 With respect to other BIPV devices, LSCs offer a series of advantages due to both their all-optical functioning mechanism and their design/fabrication versatility: (i) By collecting sunlight over a large area, the LSC design greatly increases the flux of radiation incident on the perimeter PV devices, thus enhancing the photocurrent,54,55 (ii) because LSCs use small amounts of PV material for the photon-to-electron conversion, they allow the use of PV devices with higher efficiency than conventional Si cells that would be prohibitively expensive to adopt in large quantities; (iii) indirect illumination of the perimeter cells by the waveguide makes LSCs nearly unaffected by efficiency losses and electrical stresses due to shadowing effects that occur in bulk and thin-film PVs; and (iv) LSCs can be produced with unmatched freedom in terms of shape, transparency, color, and flexibility, and their design enables the collection of solar energy using electrode-less semitransparent waveguides with essentially no aesthetic impact,$^{62−64}$ which are ideally suitable for BIPV glazing systems and might provide architects a tool to further enhance the aesthetical value of a building.65,66 Despite such promise, the widespread use of LSCs has long been hindered by the lack of emitters with sufficiently small spectral overlap between their absorption and emission profiles to suppress reabsorption of the guided luminescence,70 which leads to severe optical losses in large-area devices. This is due to both enhanced nonradiative decay probability scaling exponentially with the number of reradiation events and the isotropic nature of the emission process, which randomizes the propagation direction of guided light, increasing the portion of emitted photons approaching the LSC surface within the escape cone for total internal reflection dictated by Snell’s law. In general, for conventional poly(acrylate) waveguides with refractive index n \approx 1.5, the maximum light trapping efficiency

$$\eta_{TR} = \sqrt{1-1/n^2} = 75\%,$$

resulting in 25% optical loss at any reabsorption/re-emission event.55,67 In nontransparent LSCs, escape cone losses can be reduced by using photonic mirrors70,71 or back-reflectors63,72 that help recycle escaped photons back in the waveguide, thereby enhancing the device efficiency.

Recently, advancements in Stokes shift engineering of colloidal NCs has boosted the LSC field, enabling the realization of efficient large-area devices based on various classes of semiconductor materials, including heterostructured II–VI or V–VI NCs,$^{29,37,74−78}$ NCs doped with metal impurities75,79 or of ternary I–III–VI composition,80 and silicon NCs,56 in which effective separation between the absorption and emission functions is achieved respectively by

$$|\langle a | H_{\text{osc}} | b \rangle|^2 \approx 1 - \frac{1}{\beta_0^2},$$

Figure 1. NC-LSC concept and structural and optical properties of Mn-doped CsPbCl$_3$ NCs. (a) Schematic representation of a LSC made of a polymer matrix comprising Mn/CsPbCl$_3$ NCs. (b) Schematic representation of a three-level manganese-doped CsPbCl$_3$ NC. The band edge (BE) and Mn$^{2+}$ photoluminescence (PL) following UV excitation (purple arrow) are shown by blue and red arrows, respectively. Structural data of 4% Mn-doped CsPbCl$_3$ NCs with (c) a transmission electron micrograph (TEM; the scale bar corresponds to 50 and 2 nm in the inset) and (d) related size histogram extracted from analysis of 400 particles, showing cubic NCs with an average side length of 8.6 ± 0.6 nm. (e) XRD pattern of Mn/CsPbCl$_3$ perovskite NCs at room temperature (red line) compared to the XRD patterns of bulk cubic CsPbCl$_3$ perovskite (reference pattern 98-020-1251). (f) Optical absorption (black line) and PL spectra of Mn/CsPbCl$_3$ NCs (4% doping level) under 390 nm excitation in toluene solution. The BE and Mn-related PL bands are highlighted by blue and red shading, respectively. A photograph of the solution under 365 nm excitation highlights the dominant yellow color due to Mn$^{2+}$ emission with respect to BE PL. Insert: enlargement of the main panel between 400 and 800 nm emphasizing the small absorption contribution due to the C–H vibrational modes of the ligand molecules (the measurement is corrected for solvent effects) between 650 and 900 nm and by direct absorption between intragap Mn levels. The inset further highlights the near-complete absence of resonance between the NC absorption tail and the high-energy portion of the Mn PL.
selective carrier localization in different structural regions of the same particle, by the exploitation of emission mechanisms involving dopant or defect-related intragap states, or, in the case of silicon NCs, the partial forbiddances of the band-edge (BE) transitions due to the indirect nature of the energy gap. Similar to conventional chalcogenide NCs, perovskite NCs feature a very small Stokes shift between their absorption and emission spectra, resulting in strong reabsorption losses for propagation distances as short as a few centimeters. To date, no study on the application of Stokes shift engineered perovskite NCs to LSCs has been reported in the literature.

As a proof-of-concept of utilizing doped perovskite NCs as zero-reabsorption LSC emitters and to assess their compatibility with the radical cell-casting mass polymerization method used for producing optical-grade nanocomposite waveguides, in this work, we fabricate poly(acrylate) LSCs embedded with Mn-doped CsPbCl$_3$ NCs. We specifically chose CsPbCl$_3$, as a host material because, in this system, both the 3A$_2$ singlet ground state and the 4T$_1$ excited triplet state of Mn$^{2+}$ cations are positioned within the forbidden energy gap of the NC host, leading to the most effective sensitization of the dopant by the NC host with respect to all other CsPbX$_3$ varieties of both pure and mixed halide compositions. The schematic energy diagram of the doped NC is depicted in Figure 1b, showing the intrinsic BE radiative excitonic transition essentially resonant with the respective absorption and the 4T$_1$ excited state of Mn$^{2+}$. Crucially for LSC application, the ground (3A$_2$) and the excited states of Mn$^{2+}$ have different spin multiplicity, resulting in the characteristic vanishingly small extinction coefficient (\sim1 M^{-1} cm^{-1}) of the spin-forbidden 4A$_2$ \rightarrow 4T$_1$ absorption transition. This leads to the corresponding long-lived 4T$_1$ \rightarrow 4A$_2$ luminescence, indirectly excited by the host semiconductor, to be negligibly affected by reabsorption. We notice that, for our purpose, the eventual presence of some residual excitonic photoluminescence (PL) closely resonant with the optical absorption edge is particularly useful as it enables us to directly compare, in the exact same experimental conditions and on the same material system, the effects of reabsorption on both the dopant emission and the intrinsic BE luminescence, which effectively describes the behavior expected for undoped CsPbCl$_3$ NCs. Light propagation measurements in test-bed one-dimensional liquid LSCs, corroborated by Monte Carlo ray tracing simulations based on the experimental parameters, indicate that the dopant luminescence is essentially unaffected by reabsorption losses, whereas the BE emission undergoes a dramatic (80%) drop due to reabsorption for propagation distances of \sim10–15 cm. In order to validate our estimations in a real LSC device, we fabricated and tested nanocomposite waveguides consisting of a mass-polymerized poly(acrylate) matrix incorporating the NCs. Spectroscopic measurements of the NC in toluene solution and embedded in the polymer waveguide indicate that the dopant-related optical properties are fully preserved after the radical polymerization process, thus further demonstrating the suitability of doped perovskite NCs as emitters in plastic nanocomposites potentially applicable, in addition to LSCs, to solid-state lighting or display devices. Finally, light propagation measurements on a proof-of-principle LSC device confirm and extend the observation in the liquid waveguide, showing that the perovskite NC-LSC behaves nearly like an ideal device with essentially no reabsorption or scattering losses.

Synthesis and Optical Properties of Mn-Doped CsPbCl$_3$ NCs. Monodisperse Mn-doped CsPbCl$_3$ NCs were synthesized as described by Protesescu et al., with addition of MnCl$_2$.

Briefly, 0.1 mmol of PbCl$_2$ and 0.1 mmol of MnCl$_2$, 5 mL of octadecene, 0.5 mL of oleic acid, and 0.5 mL of oleylamine were loaded in a 25 mL three-neck flask and dried under vacuum for 1 h at 120 °C. After degassing, the temperature was raised to 180 °C and 0.4 mL of previously synthesized Cs$_2$CO$_3$ (0.4 g of Cs$_2$CO$_3$ degassed in 15 mL of octadecene and 1.75 mL of oleic acid at 150 °C) was swiftly injected. Thirty seconds after the injection, the NC solution was quickly cooled down to room temperature with an ice bath.

The NCs were purified via centrifugation (at 3000 rpm for 30 min) twice, followed by redispersion in toluene. As shown in Figure 1c,d, monodisperse and crystalline 8.6 ± 0.6 nm sized NCs were obtained, and inductively coupled plasma optical emission spectroscopy on washed NCs indicated a 3.9% Mn doping. We notice that such a Mn concentration could still be overestimated due to the difficulty in removing the excess Mn ions from the reaction medium completely. A schematic depiction of crystal structure of a CsPbX$_3$ perovskite doped with 5% Mn not considering local changes in crystal structure is reported in the inset of Figure 1c, showing a Mn$^{2+}$ ion in a 217 substitutional Pb site with essentially identical octahedral coordination with six halide atoms. The X-ray diffraction (XRD) pattern reported in Figure 1e indicates a match with 220 cubic CsPbCl$_3$, in agreement with previous studies on Mn-doped CsPbCl$_3$ NCs. Figure 1f shows the optical absorption and PL spectrum of the NCs with the characteristic sharp absorption edge at \sim395 nm and the respective narrow-waveguide PL peak placed at \sim405 nm, accounting for \sim20% of the total emission. The remaining 80% of emitted photons are due to the 4T$_1$ \rightarrow 4A$_2$ optical transition of the Mn$^{2+}$ dopants, giving rise to the characteristic broad peak at \sim590 nm (hereafter indicated as Mn$^{2+}$ PL), resulting in a very large \sim200 nm (\sim129 eV) Stokes shift from the absorption edge of the CsPbCl$_3$ host NC. The PL quantum yield, as measured with an integrating sphere, is $\Phi_{\text{PL,BE}} = 5 \pm 1\%$ for the BE emission and $\Phi_{\text{PL, Mn}} = 10 \pm 2\%$ for the Mn$^{2+}$ PL, in agreement with previous reports. Importantly, the Mn$^{2+}$ PL is nearly completely unaffected by absorption by the NC host, as emphasized in the inset of Figure 1f, where we report enlargement of the absorption spectrum for absorption coefficients between 0 and $5 \times 10^{-2} \text{cm}^{-1}$. On this expanded scale, it becomes clear that, in agreement with what was observed for Mn-doped ZnSe NCs, the absorption tail on the high-energy portion of the Mn$^{2+}$ PL peaks and the small band at \sim630 nm, respectively due to the NC host and to Mn$^{2+}$ transitions, are significantly lower than the absorption contribution due to the vibrational modes of the C–H bonds of oleic acid and oleylamine ligands between 650 and 900 nm, which, at this NC concentration (0.08 wt %), are still below $3 \times 10^{-2} \text{cm}^{-1}$.

Evaluation of Reabsorption Losses: Monte Carlo Simulations and One-Dimensional Liquid LSCs. In order to assess the potential of Mn-doped CsPbCl$_3$ NCs for reabsorption-free LSC by taking into consideration also the effect of stochastic reabsorption and re-emission events in a real LSC, we performed Monte Carlo ray tracing simulations of light propagation using the experimental absorption and PL spectra reported in Figure 1f. In our simulations, we used the device dimensions (0.25 cm \times 0.25 cm \times 22 cm) of a one-dimensional liquid test-bed LSC reported later in this work and investigated the evolution of the light output probability for both the BE and CL emissions.
Most importantly, the Mn$^{2+}$ PL is essentially unaffected by reabsorption by the NC host, as demonstrated by the invariance of the high-energy spectral tail, whereas the minor decrease of the low-energy portion is mostly due to absorption by the vibrational modes of the ligand molecules, leading to a 20% intensity drop for d as long as 25 cm. In this case, because reabsorption by the NC is essentially absent, the same trend of the light output probability vs d is observed for any value of $\Phi_{\text{PL,Mn}}$.

On the basis of these promising theoretical predictions, we proceed with experimentally evaluating the reabsorption losses in a one-dimensional liquid waveguide consisting of a 22 cm × 0.25 cm × 0.25 cm quartz cuvette filled with a toluene solution of Mn/CsPbCl$_3$ NCs with the same concentration as the one used for the Monte Carlo simulations shown in Figure 2b–d. The use of a one-dimensional liquid waveguide as a test-bed LSC device is particularly useful in the case of wide-band-gap materials such as chlorine-based perovskites that require UV photexcitation, which could lead to parasitic emission contributions by the polymer matrix that complicate the data analysis, as described in detail in the next section. In this experiment, the PL spectrum is collected at the edge of the waveguide for increasing spatial separation d between the excitation spot and the LSC edge, as schematically depicted in Figure 3a. The PL spectra for both the BE and the Mn-related emissions at increasing d are shown in Figure 3b, showing close resemblance of the theoretical predictions reported in Figure 3b,c. Specifically, the BE luminescence undergoes progressive quenching of its high-energy tail due to reabsorption, resulting in a strong ~80% intensity drop for $d \approx 10$ cm. On the other hand, the Mn$^{2+}$ PL is essentially unaffected by reabsorption due to their strong overlap with the absorption edge of the LSC, as demonstrated by the invariance of the high-energy spectral tail, whereas the minor decrease of the low-energy portion is mostly due to absorption by the vibrational modes of the ligand molecules, leading to a 20% intensity drop for d as long as 25 cm. In this case, because reabsorption by the NC is essentially absent, the same trend of the light output probability vs d is observed for any value of $\Phi_{\text{PL,Mn}}$.
measurements on liquid test-bed LSCs with Mn/CsPbCl$_2$$_3$ drop of the BE luminescence in accordance with the Monte Carlo simulations. (c) Respective spectrally integrated PL intensities vs d showing near-invariance of the Mn emission intensity and a strong drop of the BE luminescence in accordance with the Monte Carlo theoretical predictions.

hand, in agreement with the theoretical simulations, the Mn$^{2+}$ PL is nearly unaffected by reabsorption, and its dimming is only \sim15% for optical distances as long as 22 cm.

Mass Polymerized Reabsorption-Free Perovskite LSCs. After assessing the potential of Mn-doped CsPbCl$_2$, perovskite NCs as reabsorption-free emitters for LSCs, we proceed with the practical demonstration of a polymer-based LSC incorporating the NCs. With this aim, we fabricated a proof-of-principle LSC device by radical mass polymerization of an 80:20 wt % mixture of methyl methacrylate (MMA) and lauryl methacrylate (LMA) doped with NCs. The choice of poly(methyl methacrylate) (PMMA) as the main waveguide material is dictated by its excellent optical properties, high resistance to exposure to UV light, and various chemical treatments, as well as excellent performance in all-weather conditions. For these reasons, PMMA is widely used in construction as a lightweight window material and in optics for fabricating lenses and prisms as well as in optical fibers. On the other hand, LMA has long alkyl side chains that display dynamics resembling those of liquids.

Exposure of the monomer mixture to 365 nm UV light in the presence of the radical photoinitiator (IRGACURE 651; 1% wt/w) results in mass polymerization of a random copolymer resulting by macroscopic phase segregation that could be detrimental to the optical transport properties of the waveguide due to scattering. Notably, because the polar methacrylate backbone and the nonpolar alkyl side chains of LMA are incompatible but connected by a covalent bond, the polymer bulk is phase separated at the nanoscopic level, which provides the NCs with a local environment that is very similar to that of octadecene or analogous solvents used in the NC synthesis. This specially designed near-native polymeric environment largely improves the miscibility of the NCs with the monomer mixture, leading to a scattering-free nanocomposite.

The fabrication procedure consists of initial wetting of the NCs in a small volume of LMA monomer for 3 h to ensure fine dispersion of the individual particles. The monomer–NC mixture is then added to a large volume of MMA together with the radical photoinitiator. With respect to the polymerization routes of pure LMA used in previous studies, no cross-linking agent was added to the mixture as the dominant PMMA fraction ensures mechanical stability of the nanocomposite at room temperature (see Figures S1 and S2).

Figure 4a reports two photographs of a fabricated LSC with dimensions of 25 cm x 20 cm x 0.5 cm comprising 0.03 wt % NCs under ambient and 365 nm UV illumination, showing yellow luminescence, of qualitatively comparable color as the toluene solution shown in the inset of Figure 1f, emerging mostly from the slab edges with minor emission from its surfaces, suggesting that light scattering in this device is particularly low. The concentration of NC was chosen in order to achieve \sim70% optical absorption of band gap radiation. Increasing it further does not significantly increase the absorption but could introduce scattering losses due to NC aggregation. The picture taken under ambient illumination highlights the high optical quality of the LSC waveguide that appears nearly transparent, as expected given the very sharp absorption edge of the NCs at 395 nm. In order to experimentally quantify the scattering losses of our LSC at the emission wavelength of the Mn$^{2+}$ PL, we performed light propagation experiments using a collimated laser source at 633 nm entering the device from one edge and collecting the light intensity escaping from the LSC faces. The results, shown in Figure 4b, reveal that the light output undergoes \sim20% drop for a propagation distance of 25 cm, in agreement with the absorption by the polymer matrix ($\alpha \approx 1 \times 10^{-2} \text{ cm}^{-1}$), thus confirming that the scattering losses for the Mn$^{2+}$ PL are essentially negligible. Accordingly, the attenuation of the laser light vs d matches well the trend calculated using the Lambert–Beer equation for linear propagation along the waveguide. One further critical step for the realization of poly(acrylate) LSCs based on perovskite NCs is the preservation of their spectral properties and PL efficiency after the mass polymerization procedure involving highly reactive radical initiators. In order to test this aspect, we conducted side-by-side spectroscopic measurements on the NCs in solution and embedded in the polymer waveguide. The emission spectrum of the BE luminescence and Mn$^{2+}$ PL in both the native toluene solution and in the P(MMA/LMA) nanocomposite collected in reflection geometry to minimize reabsorption effects are reported in Figure 4c, showing essentially no differences between the two conditions, which demonstrates that the polymerization procedure does not modify the spectral properties of the NCs. The same figure also shows the absorption spectrum of the nanocomposite (gray line), in direct comparison with the absorption spectrum of a P(MMA/LMA) slab of identical thickness and composition but without the NCs (light blue pattern). The first excitonic feature of the NCs is clearly distinguishable at 395 nm, in agreement with the spectrum in toluene solution shown in Figure 1f. Both the bare slab and the nanocomposite show a steep edge at about 390 nm followed by a weak tail at longer wavelengths likely due to low-order absorption effects.
The inset shows the schematic depiction of the experimental configuration. The NC-LSC as a function of the device area illuminated by a calibrated solar simulator (1.5 AM Global, circles). The theoretical trend fits well the experimental data. The green dashed lines represent the polymer defects at 410 nm and are due exclusively to the polymer matrix. The black arrow indicates increasing distance from the edge (as indicated by the black arrow) after subtraction of the corresponding emission contribution by the polymer matrix. The raw spectrally resolved absorption coefficient of the LSC is shown as a gray line in direct comparison to the spectrum of a pure P(MMA/LMA) slab (light blue shaded area), showing the absorption edge of the polymer absorption at ~395 nm and the long tail due to the structural defects responsible for the greenish PL. The PL decay curves collected at (d) 600 nm for the Mn2+ PL for NCs and (e) 405 nm for the BE emission in toluene solution (black lines) and embedded in the P(MMA/LMA) matrix (red and blue lines, respectively). (f) Normalized PL spectra (excitation at 395 nm) collected at the edge of the LSC when the excitation spot is located at increasing distances d from 0 to 25 cm from the edge (as indicated by the black arrow) after subtraction of the corresponding emission contribution by the polymer matrix. The raw PL data under site-selective excitation are shown in the inset; the red lines are excited at 395 nm and show contribution of both the polymer and the NCs. The green dashed lines are excited in the low-energy tail of the polymer slab shown in Figure 3f, an accurate estimation of the number of photons absorbed by the NCs is not experimentally accessible in this system, which prevents us from measuring the absolute PL efficiency of the NCs in the nanocomposite.

Next, we proceeded by confirming the absence of reabsorption effects on the Mn2+ PL also in our polymer-based LSC device. With this aim, we collected the PL spectrum from one of the slab edges (20 × 0.5 cm2) using 395 nm laser excitation positioned at different distances d, from the waveguide edge, similar to the light propagation experiments on the one-dimensional liquid LSC reported in Figure 3. As anticipated above, in this excitation condition, the polymer waveguide exhibits a parasitic greenish emission at ~500 nm (inset of Figure 4f), likely arising from polymer defects responsible for the absorption tail of both bare and NC-containing P(MMA/LMA) slabs. Such PL is, however, strongly reabsorbed by the matrix, resulting in ~80% drop in a less than 3 cm propagation distance. The decay dynamics of this luminescence is on the same time scale as the Mn2+ PL, which prevents the use of time-gated techniques for decoupling the two emission components. In order to extract the trend of the Mn2+ PL as much as possible unaffected by this spurious luminescence, we therefore performed side-by-side PL measurements under spectrally selective excitation conditions. The inset shows the schematic depiction of the experimental configuration.
for the polymer and the NC’s PL at identical values of \(d \). Specifically, we tuned the emission of a Ti:sapphire laser at 395 nm to excite mostly the NCs and at 410 nm, which is below the absorption edge of the NCs, to selectively pump the polymer matrix. In this way, we obtained the set of spectra reported in the inset of Figure 4f, from which, by subtraction, we extracted the emission spectra of the Mn\(^{2+}\) PL as a function of \(d \). In Figure 4f, we report the normalized spectra of the Mn\(^{2+}\) PL for \(d = 0–25 \) cm obtained through the procedure described above, showing minor spectral modification in qualitative agreement with the data on the one-dimensional liquid waveguide shown in Figure 3.

One final confirmation of the absence of reabsorption and scattering losses for the Mn\(^{2+}\) PL in our LSCs is that all portions of the device surface contribute nearly equally to its total power output. To highlight this behavior, in Figure 4g, we show the relative output power extracted from one of the LSC edges (20 × 0.5 cm\(^2\)) measured by coupling calibrated c-Si solar cells to one slab edge and by progressively exposing increasingly larger portions of the LSC area to the solar simulator. The trend calculated by Monte Carlo ray tracing simulation for an ideal scattering- and reabsorption-free LSC of identical dimensions embedding emitters with the same \(\Phi_\text{PL} \) as the Mn\(^{2+}\) PL, for which the power output is determined exclusively by the numerical aperture of the illuminated area, is also reported in Figure 4g for direct comparison with the experimental data. The calculated curve matches well the experimental behavior for illumination fractions as large as \(\approx 80\% \), indicating that suppression of reabsorption in Mn/ CsPbCl\(_3\) perovskite NCs is effective in rendering the device behavior close to ideal.\(^{59}\) This match between theory and experiments further confirms that the effect of the parasitic polymer emission on the total device light output is negligible, as expected based on its strong reabsorption observed for very short optical distances (inset of Figure 4f).

Despite the nearly complete suppression of reabsorption for the dopant emission, we highlight that Mn/CsPbCl\(_3\) perovskite NCs are not directly suitable for the fabrication of highly efficient LSCs because of both their relatively low emission efficiency and their wide energy gap, which results in their absorption edge being positioned in the near-UV end of the visible spectrum (395 nm, Figure 1f). This limits the light-harvesting capability by the NCs to below ~5% of the solar spectrum and results in significant overlap with the absorption tail of the polymer matrix, which further lowers the intensity of incident light available for NC excitation. As a result, the optical power efficiency of our LSC, measured by illuminating the device perpendicular to its top surface using a calibrated solar simulator with power density \(P = 100\) mW/cm\(^2\) (1.5 AM Global) and collecting the guided luminescence by calibrated c-Si solar cells, is characterized by an efficiency of \(\eta \approx 0.5\% \) (including the minor contributions of the BE and polymer emission), where \(P_\text{OUT} \) is the luminous power collected by the solar cells and \(P_\text{IN} \) is the solar power incident on the LSC surface. With regard to optimization of the PL quantum efficiency, strategies are being investigated for suppressing nonradiative carrier trapping in localized defects. For example, Kosher et al.\(^{59}\) recently demonstrated trap-free perovskite NCs by postsynthetic treatment with thioacetate, resulting in unitary emission efficiency from undoped CsPbBr\(_3\) NCs. Such an approach has not yet been applied to doped perovskite NCs, and in case of success, it could boost their efficiency to values suitable for highly performing LSCs.

Extension of the solar coverage by the NCs will require means to lower the energy gap of the NC host, and improved doping strategies will be concomitantly needed for ensuring a sufficiently wide Stokes shift to suppress reabsorption. Given the small effect of carrier confinement on the electronic properties of perovskite NCs, size tuning is not sufficient to reach extended solar coverage with chlorine-based perovskites, and other formulations are therefore required. Manganese, in turn, is a valuable dopant for proving the potential of these structures for photon management applications, but its \(d – d \) optical transition at \(\approx 600 \) nm limits the maximum spectral coverage to the green portion of the solar spectrum. CsPbI\(_2\) NCs could, in principle, be suitable as broad-band absorbing hosts to nearly 700 nm,\(^{6,64}\) provided that strategies are found for their stabilization and for the incorporation of impurities capable of activating efficient Stokes shifted near-IR luminescence. A further possibility could be the use of CsSnX\(_3\) perovskite NCs recently demonstrated by Jellicoe et al.,\(^{96}\) showing broad-band optical absorption and Stokes shifted PL likely due to the involvement of localized defect states in the exciton recombination mechanisms. These systems would have the additional advantage of having a Pb-free composition, but their current PL quantum yield would require optimization to be suitable for efficient LSCs. Another possibility for removing the potential environmental risks associated with Pb could be to engineer the Stokes shift of recently reported cesium bismuth halide perovskites.\(^{91}\)

To date, doping of perovskite NCs, as well as their Stokes shift engineering, is still at the embryo stage, and novel approaches are continuously appearing in the literature, suggesting that perovskite NCs with optimized performances specifically designed for advanced photon management technologies could be achieved in the short term.

In conclusion, we have demonstrated the suitability of doped perovskite NCs as nearly zero reabsorption emitters for LSCs. Light propagation measurements in both test-bed one-dimensional waveguides and poly(acrylate) concentrators, corroborated by Monte Carlo ray tracing simulations, indicate that the dopant PL is nearly completely unaffected by reabsorption losses by the NC host and the only effects are due to resonance with the vibrational modes of the ligand molecules leading to a small 15% optical loss for propagation lengths as long as 20 cm. Polymer-based LSCs were fabricated using the radical mass polymerization procedure of a mixture of MMA and LMA to simultaneously ensure thermal and mechanical stability and optimal compatibility of the NCs, resulting in high optical quality waveguides, in which scattering losses are less than two orders of magnitude. Importantly, time-resolved PL measurements indicate that the dopant-related PL of the NCs is fully preserved. Accordingly, the LSC behaves closely to an ideal device, in which all portions of the illuminated area contribute equally to the total optical power. These proof-of-principle results demonstrate the potential of doped perovskite NCs for LSC-based BIVP technologies as well as for other photon management applications relying on low-attenuation long-range optical wave guiding.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.7b00701.
Emissive Perovskite Nanocrystal Inks for High-Voltage Solar Cells.

Nanocrystals: A New Research Frontier of Optoelectronic Materials.

Nanocrystals of Cesium Lead Halide Perovskites (CsPbX

Thickness Control.

Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level

Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of

Colloidal CH

Soc.

Perovskite Nanoplatelets.

Stolarczyk, J. K.; et al. Quantum Size Effect in Organometal Halide

Exciton Recombination Processes in CsPbBr$_3$ Perovskite Nanocrystals. 779

Nano Lett. 2017, 17, 3844–3853. 780

(42) Liu, W.; Lin, Q.; Li, H.; Wu, K.; Robel, I.; Pietryga, J. M.; 781
Klimov, V. I. Min$^-$Doped Lead Halide Perovskite Nanocrystals with 782
Dual-Color Emission Controlled by Halide Content. J. Am. Chem. Soc. 783
2016, 138, 14954–14961. 784

(43) Mir, W. J.; Jagadeeswararao, M.; Das, S.; Nag, A. Colloidal Mn$^+$ 785
Doped Cesium Lead Halide Perovskite Nanoplatelets. ACS Energy 786
Lett. 2017, 2, 537–543. 787

(44) Parobek, D.; Roman, B. J.; Dong, Y.; Jin, H.; Lee, E.; Sheldon, 788
M.; Son, D. H. Exciton-to-Dopant Energy Transfer in Mn-Doped 789
7376–7380. 791

(45) Garia, A. K.; Dutta, S. K.; Adhikari, S. D.; Pradhan, N. Doping 792
Mn$^+$ in Lead Halide Perovskite Nanocrystals: Successes and 793
Challenges. ACS Energy Lett. 2017, 2, 1014–1021. 794

(46) van der Stroom, W.; Geuchjes, J. J.; Altantzis, T.; van den Bos, K. 795
H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vannakelbergh, D.; de 796
Mello Donega, C. Highly Emissive Divalent-Ion-Doped Colloidal 797
CsPb$_x$M$_{3-x}$Br$_4$ Perovskite Nanocrystals through Cation Exchange. 798

(47) Begum, R.; Parida, M. R.; Abadlalhy, A. L.; Murali, B.; Aiyami, 800
N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. 801
Engineering Interfacial Charge Transfer in CsPbBr$_3$ Perovskite 802
139, 731–737. 804

(48) Brovelli, S.; Schaller, R. D.; Crooker, S. A.; Garcia-Santamaria, 805
V. I. Nano-Engineered Electron-Hole Exchange Interaction Controls 807
Exciton Dynamics in Core-Shell Semiconductor Nanocrystals. Nat. 808
Commun. 2011, 2, 280. 809

(49) Meinardi, F.; Colombo, A.; Velzhanin, K. A.; Simonutti, R.; 810
Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. 811
Large-Area Luminescent Solar Concentrators Based on Stokes-Shift- 812
Engineered Nanocrystals in a Mass-Polymerized PMMA Matrix. Nat. 813
Photons 2014, 8, 392–399. 814

(50) Donega, C.; M. D. Quantum and Electronic Properties of Colloidal 815

(51) Hadar, I.; Philbin, J. P.; Panfil, Y. E.; Neyeshtadt, S.; Lieberman, 817
I.; Eshet, H.; Lazar, S.; Rabani, E.; Banin, U. Semiconductor Seeded 818
Nanorods with Graded Composition Exhibiting High Quantum-Yield, 819
2531. 821

(52) Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S. F. 822
Energy-Down-Shift CsPbCl$_2$Mn Quantum Dots for Boosting the 823
Efficiency and Stability of Perovskite Solar Cells. ACS Energy Lett. 824
2017, 2, 1479–1486. 825

(54) Goetzberger, A.; Greube, W. Solar Energy Conversion with 828
Fluorescent Collectors. Appl. Phys. 1977, 14, 123–139. 829

(55) Debie, M. G.; Verbunt, P. P. C. Solar Concentrators: Thirty 830
Years of Luminescent Solar Concentrator Research: Solar Energy for 831

(56) Meinardi, F.; Ehrenberg, S.; Dhamo, L.; Carrili, F.; Mauri, M.; 833
Bruni, F.; Simonutti, R.; Kortshagen, U.; Brovelli, S. Highly Efficient 834
Luminescent Solar Concentrators Based on Earth-Abundant Indirect- 835

(57) Meinardi, F.; McDaniel, H.; Carulli, F.; Colombo, A.; Velzhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I. 838
Brovelli, S. Highly Efficient Large-Area Colourless Luminescent Solar 839
Concentrators Using Heavy-Metal-Free Colloidal Quantum Dots. Nat. 840
NanoTechnol. 2015, 10, 841. 842

(58) van Sark, W. G. J. H. Luminescent Solar Concentrators − a 843
210. 845

(59) Herrmann, A. M. Luminescent Solar Concentrators - a Review. 846

Dimroth, F.; Glunz, S. W.; Willeke, G. Increasing the Efficiency of Monocrystalline Silicon Photovoltaic Luminescent Solar Concentrator 2015.

Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.

